If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16k^2=40k
We move all terms to the left:
16k^2-(40k)=0
a = 16; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·16·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*16}=\frac{0}{32} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*16}=\frac{80}{32} =2+1/2 $
| 94-y=97 | | 2(g+1)-7=3 | | k/13=-19 | | 6x+10=10x=10 | | 74-14x=17+19x | | 2(h-4)-5=5 | | E^(2t-t^2)=0 | | 1x+6=1x+10 | | 3(x-100=50 | | x/16(13)=13(13) | | 7d=9+6d | | -8+5k=42 | | 184+6x+5x+12=180 | | -72+9x=40+x | | 2(x+3)=5(2x+1)+44 | | x–10=4x–20 | | -3x-4=4-x | | 5u+8=72 | | 8=5=o | | 11=2(s−6)−7 | | 26+42x=30x+73 | | r-13=-32 | | -9n+4=-7n-6 | | 1/2(2x-8)=-4(x+1) | | -15-2x=10+3x | | -2(n−9)=-14 | | x-9/3+4=2 | | (5x+10)°=(7x-4) | | y=-5y=-4 | | 8(4+p=-16 | | 4x+0.66=5x-0.8 | | -2-(-17)=x/4 |